

8-9 February 2012, Istanbul

Seismic Engineering Research Infrastructures for European Synergies University of Patras • European Commission • Framework Programme 7

International Workshop "Role of research infrastructures in seismic rehabilitation"

SEISMIC VULNERABILITY OF MULTI-LEAF, HERITAGE MASONRY WALLS USING ELASTO-PLASTIC DAMAGE MODEL

By B.H. Al-Gohi¹, C. Demir², A. Ilki², M.H. Baluch¹ and M.K. Rahman³, A.H. Al-Gadhib

¹Department of Civil Engineering, KFUPM, Dhahran, Saudi Arabia
²Department. of Civil Engineering, ITU, Istanbul, Turkey
³Center for Engineering Research, KFUPM, Dhahran, Saudi Arabia

OUTLINE

- 1. Introduction.
- 2. Subject and Scope
- 3. Experimental Study at ITU
- 4. FEM Simulations
- 5. Conclusions
- 6. Work in Progress at KFUPM

Introduction

- Masonry structures are also commonly used in <u>Saudi Arabia</u> for the construction of low rise buildings especially in small towns and villages due to economy in the cost of construction.
- There exists a <u>rich heritage</u> of URM structures in the <u>Western region</u> of Saudi Arabia.
- With only a <u>few incidences</u> of major earthquakes in the Kingdom in the recent history, research into seismic retrofitting of masonry structures is <u>rather scant</u>.

Aim and Scope

- An experimental study on 'multi-leaf stone masonry walls', carried out in ITU Structural and EQ Engineering Laboratory is briefly introduced.
- Finite element analysis results of two experimental studies (Demir et al. (2011) and Nanni et al. (2005) are presented.
- Axial stress vs. Shear strength curves for both studies are obtained via FEA and compared.
- Ongoing efforts in KFPUM are indicated.

EXPERIMENTAL STUDY CARRIED OUT IN ITU (Demir et al., 2011)

INTRODUCTION TO THE EXPERIMENTAL PROGRAM

- The two-layer walls of stone, often cut in the outer wall.
- Inner layer of rubble filling
- Iron clamp (and in some cases, shear pins) connected to each other block.
- The reinforcement of stone anchors units is molten lead.

INTRODUCTION TO THE EXPERIMENTAL PROGRAM

Bayezid Mosque-15. century (Cut Stone Wall)

EXPERIMENTAL PROGRAM

1 / 3 scale wall specimens

Wall Model

Stone blocks

EXPERIMENTAL PROGRAM

Wall Tests

The tests were done at ITU Structural and EQ Engineering Laboratory.

- The variables are ullet
 - normal stress level, ullet
 - and clamps ullet
- For each axial load, horizontal cyclic force is applied in the in-plane ۲

sample	clamp _	Axial Load (MPa)	variable
M-25-C	Yes	0.25	axial stress
М-50-С	Yes	0.50	axial stress
M-75-C	Yes	0.75	axial stress
М-100-С	Yes	1.00	axial stress
M-50	No	0.50	Clamp not used

direction

EXPERIMENTAL PROGRAM

Wall Tests

FEM Simulations

FEM Simulations

- FEM analysis has been used to model and simulate the behavior of masonry wall subjected to in-plane loading
- Concrete-damage plasticity (CDP) model available in ABAQUS has been adopted for this purpose. This model provides a good prediction for the behavior of such structures with cyclic loading
- ABAQUS software has been used for the simulation. ABAQUS provides an extraordinary capability to simulate this type of structure under cyclic loading using the desired model.

The main purpose of the study is to find the interaction diagram between the normal stress and lateral shear strength of the wall.

For this purpose, a Finite element simulation has been carried out for two walls:

- The wall tested at ITU by Demir et al. (2011)
- A hollow block concrete wall studied by Nanni et al (2005)

Elasto-Plastic Damage Model Wall tested by Demir et al. (2011)

• The interface between the units is dry connection.

? KING HAR

Wall tested by C. Demir et al

Material models used in this wall in ABAQUS

Bricks Compression:

Mass Density	Young's Modulus	Poisson's Ratio	Dilation Angle	Eccentricity	fb0/fc0	К	Viscosity Parameter
2.4E-009	3200	0.18	36	0.1	1.16	0.67	0

Compr	ession
Plastic Strain	Stress (Mpa)
0	7.26
0.00046	7.03
0.0029	6.58
0.0044	5.9
0.006	4.83
0.008	3.47

-, KING HALL

Wall tested by C. Demir et al

Material models used in this wall in ABAQUS

Bricks Tension:

Mass Density	Young's Modulus	Poisson's Ratio	Dilation Angle	Eccentricity	fb0/fc0	к	Viscosity Parameter
2.4E-009	3200	0.18	36	0.1	1.16	0.67	0

Tension							
Plastic Strain	Stress (Mpa)						
0	1 5						
0	1.5						
0.001	0.5						
0.003	0.1						

Wall tested by C. Demir et al

Material models used in this wall in ABAQUS

Rubble Compression:

Compr	ession
Plastic Strain	Stress (Mpa)
0	0.93
0.00014	1.17
0.00027	1.24
0.00061	1.33
0.0013	1.35
0.0023	1.26
0.0058	0.74

Wall tested by C. Demir et al

Rubble Tension:

Mass Density	Young's Modulus	Poisson's Ratio	Dilation Angle	Eccentricity	fb0/fc0	к	Viscosity Parameter
1E-009	590	0.18	36	0.1	1.16	0.67	0

Tention					
Plastic Strain	Stress (Mpa)				
0	0.2				
0.001	0.1				
0.003	0.05				

Wall tested by C. Demir et al

RESULTS: Wall Lateral Strength.

Wall tested by C. Demir et al

RESULTS: Interaction Curve.

Wall tested by C. Demir et al

RESULTS: Normalized Interaction Curve.

FEM Simulations Wall tested by C. Demir et al

FEM Simulations

Wall tested by C. Demir et al

 $\sigma_n = 0.25 Mpa$

Plastic Strain

Elasto-Plastic Damage Model Wall studied by Nanni et al. (2005)

- This wall is a single leaf wall of hollow concrete blocks.
- The interface between the bricks is mortar.

Wall studied by Nanni et al. (2005)

Material models used in this wall in ABAQUS

Hollow concrete blocks:

Wall studied by Nanni et al

Material models used in this wall in ABAQUS

Hollow concrete blocks:

Wall studied by Nanni et al

Material models used in this wall in ABAQUS

Mortar:

Mass Density	Young's Modulus	Poisson's Ratio	Dilation Angle	Eccentricity	fb0/fc0	к	Viscosity Parameter
2.4E-009	11191.52805	0.2	36	0.1	1.16	0.67	0

Compr	ession
Plastic Strain	Stress (Mpa)
0	4.536
5.07E-05	5.103
0.000345	5.6
0.001095	5.67
0.003095	4.7
0.005395	3

Wall studied by Nanni et al

Material models used in this wall in ABAQUS

Mortar::

Mass Density	Youn	ıg's ulus	Poisson's Ratio	Dilation Angle	Eccentricity	fb0/fc0	К	Viscosity Parameter
2.4E-009	11191.5	52805	0.2	36	0.1	1.16	0.67	0
	Tens	sion		1.6				
Plastic S	Strain	Stres	s (Mpa)					
0		1.4	28706	0.8 (W				
0.000	872		0.8	¹ , 0.6				
0.001	872		0.4	0.4		*		
0.003	872		0.1	0.2				
				0 0.	0005 0.001 0.0015	0.002 0.0025 0.003	3 0.0035 0.004 C	0.0045

Wall studied by Nanni et al

RESULTS - Wall Lateral Strength.

Wall studied by Nanni et al

RESULTS- Interaction Curve.

Wall studied by Nanni et al

RESULTS-Normalized Interaction Curve.

$$\sigma_n = 0.50 Mpa$$

$$\sigma_n = 0.75 Mpa$$

FEM Simulations

Wall studied by Nanni et al

Plastic Strain

 $\sigma_n = 2.0 Mpa$

FEM Simulations

Plastic Strain

 $\sigma_n = 3.0 Mpa$

Normalized Interaction Curve of both walls.

Normalized Interaction Curve of both walls.

Conclusion

Masonry structure mechanics is one of the areas where limited research has

been carried out in the Gulf Region.

- There exists a strong need to initiate seismic research as seismic activities could take place at any time in the Region.
- ABAQUS shows promising features in handling analysis of complex structures and loads.

Conclusion

• The effect of axial loading on the capacity of the lateral wall is independent of the wall pattern and material used.

 Walls with aspect ratios -1.0 exhibited maximum lateral resistance when the axial loading was almost 50% of the wall axial capacity.

WORK IN PROGRESS KFUPM

As mentioned before, there is a cooperation between KFUPM and ITU.

- Recently, the lab facilities are being constructed in KFUPM for cyclic load testing of masonry walls.
- In Numerical Modeling work on Nonlinear FEA of CFRP Retrofitted masonry walls is in progress

WORKS IN KFUPM

Reaction wall and loading frame.

WORKS IN KFUPM

Wall testing set up

Acknowledgments

- Experimental study was funded by ITU Research Fund.
- The study being carried out in KFPUM is funded by King Fahd University of Petroleum & Minerals under project number IN101016 " Seismic Retrofit of Typical Wall Systems in Traditional Structures in the Kingdom" which is gratefully acknowledged.
- The authors acknowledge the mentoring provided by ITU to the KFUPM graduate students involved in this project

Thank you for your attention

HICAL

FLISWANING